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Certain classical statistical systems with strong local constraints are known to exhibit Coulomb phases,
where long-range correlation functions have power-law forms. Continuous transitions from these into ordered
phases cannot be described by a naïve application of the Landau–Ginzburg–Wilson theory since neither phase
is thermally disordered. We present an alternative approach to a critical theory for such systems, based on a
mapping to a quantum problem in one fewer spatial dimensions. We apply this method to spin-ice, a magnetic
material with geometrical frustration, which exhibits a Coulomb phase and a continuous transition to an
ordered state in the presence of a magnetic field applied in the �100� direction.
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I. INTRODUCTION

Classical statistical systems with Coulomb phases, where
long-range correlation functions have power-law forms, have
been of great interest in recent years. Of particular interest
are continuous transitions from Coulomb to ordered
phases,1–3 which are prima facie incompatible with the stan-
dard Landau–Ginzburg–Wilson theory since neither phase is
simply thermally disordered.

Various classical systems exhibiting power-law correla-
tion functions—such as geometrically frustrated
antiferromagnets,3,4 crystalline water ice,5,6 and close-packed
dimers on square and cubic lattices1,7—have in common lo-
cal constraints arising from dominant terms in the micro-
scopic Hamiltonian. In an effective description of the Cou-
lomb phase, the local degrees of freedom are replaced by a
continuum field, with the constraints replaced by a require-
ment that the field be divergenceless. The power-law behav-
ior is then understood in terms of the correlations of this
solenoidal field.8–10

This coarse-grained picture does not, however, allow a
description of certain ordered phases where the discrete na-
ture of the local degrees of freedom is crucial and therefore
cannot describe transitions into these phases. These include
states with saturated magnetic moments, as well as ordered
phases in dimer models with hard-core repulsion between
dimers.1

Here we will describe an alternative approach, which
leads to an effective critical theory for continuous transitions
from Coulomb phases to such ordered phases. It is based on
the standard mapping between a thermal phase transition in d
spatial dimensions and a quantum phase transition at zero
temperature in d−1 dimensions. The local degrees of free-
dom are represented by hard-core bosons, allowing their dis-
crete nature to be treated exactly, while the power-law cor-
relations in the Coulomb phase are reproduced by the
fluctuations of the Goldstone mode that appears when the
bosons condense. One clear disadvantage of the method is
that it necessarily treats the system anisotropically, with one
of the spatial dimensions being mapped to the quantum
imaginary time, but it should be noted that space-time isot-
ropy is often restored in the continuum limit of various quan-
tum models.

In a forthcoming work, we will present the application of
this approach to the ordering transition of close-packed
dimers on the cubic lattice.1 Here, we address a model of
spin-ice6,11 in an applied magnetic field aligned along the
�100� crystallographic direction.2 This system is convenient
first because the mapping to the quantum problem takes a
particularly transparent form, and second because the isot-
ropy of the classical system is already broken by the mag-
netic field. The problem is also interesting in its own right
because the phase transition is produced by an external field,
and because, as we explain in Sec. I C, it is an unusual ex-
ample of a Kasteleyn transition12,13 in three dimensions.

A brief account of the application of a simplified version
of this method to spin-ice has appeared elsewhere,2 along
with results from Monte Carlo simulations. It was shown
there that a �100� magnetic field can cause a Kasteleyn tran-
sition from the Coulomb phase to an ordered phase where
the spins are aligned with the field and fluctuations are fro-
zen. For the corresponding quantum problem, this becomes a
quantum phase transition from a Bose condensate to a
vacuum state.

Here we present the method in full, treating properly the
crystal structure of spin-ice, and show that doing so leads to
an effective quantum Hamiltonian with non-Hermitian
directed-hopping terms. We demonstrate that these terms are
crucial to understanding the Coulomb phase correlation func-
tions via the quantum mapping. At the transition, however,
we show they have no effect so that the standard critical
theory for the vacuum transition of two-dimensional bosons
applies, as conjectured in Ref. 2.

In the remainder of this section, we will present the
Hamiltonian for spin-ice and review how, in the absence of
an applied magnetic field, the correlation functions in the
Coulomb phase can be understood in terms of an effective
solenoidal field. In Sec. II, we describe in detail the mapping
to a quantum problem and the general form of the Hamil-
tonian that results, while in Sec. III we find the continuum
action that corresponds to this Hamiltonian. This allows us to
obtain the critical theory for the ordering transition and also
to show that the quantum model correctly reproduces the
correlation functions within the Coulomb phase. Finally, in
Sec. IV, we show that these same correlation functions can
be found directly from the microscopic quantum Hamil-
tonian, by treating the hard-core bosons as S= 1
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taking the lowest order in a spin-wave expansion.

A. Spin-ice: Hamiltonian

The spin-ice compounds consist of ions with large mag-
netic moments ��10�B� arranged on the sites i of a pyro-
chlore lattice �see Fig. 1�, with a strong crystal field favoring
alignment of the spins along the lines joining the centers of
neighboring tetrahedra.6 At low temperatures, each moment
Si is therefore constrained to take the values Si=Siei, where
Si= �1 is an effective classical Ising spin and ei is a unit
vector joining the centers of two neighboring tetrahedra.
�The centers of the tetrahedra form a diamond lattice, and we
choose the convention where ei always points from a certain
diamond sublattice to the other.�

In the spin-ice materials Ho2Ti2O7 and Dy2Ti2O7, the
largest interaction terms are long-range dipolar forces be-
tween the magnetic moments.6 It has been shown,11 however,
that the low-energy states of dipolar spin-ice have a “projec-
tive equivalence” to those of a model with purely short-range
ferromagnetic interactions, and we will work with this sim-
plified model. Despite being ferromagnetic, this model is
frustrated, and the ground-state degeneracy, determined ex-
perimentally by low-temperature measurements of the
entropy,14 is in fact identical to that in the cubic phase of
water ice.

We treat spin-ice in the presence of a field h along the
�100� crystallographic direction of the pyrochlore lattice �the
vertical direction in Fig. 1�, whose effect is much smaller
than the interaction between the spins. The field then acts as
a perturbation within the manifold of degenerate ground
states of the h=0 problem. The Hamiltonian can be written
as

E = − J�
�i,j�

Si · S j − hn̂�100� · �
i

Si

= Jeff�
�i,j�

SiSj − heff�
i

�− 1�ziSi, �1�

where �i , j� denotes that the sum is over nearest-neighbor
sites i and j, and n̂�100� is a unit vector in the �100� direction,
which we take as the z axis. In the second equation, we have
made use of the constraint Si=Siei, and zi denotes the z com-
ponent of the position of site i. Note that in terms of the Ising
degrees of freedrom Si, the effective coupling Jeff=

1
3J is an-

tiferromagnetic and heff=
1
	3

h is an effective staggered field.
Throughout, we will consider low temperature T and weak
field, taking h ,T�J.

For h=0, the energy is minimized by any configuration
where every tetrahedron of the pyrochlore lattice has two
spins pointing inward and two pointing outwards; such con-
figurations are said to obey the “ice rules.”6 The number of
such states grows exponentially with system volume, and so
there is no ordering even for T�J. The long-distance spin-
spin-correlation functions have a power-law form, which can
be found using a coarse-grained solenoidal field, as we will
review in Sec. I B.

In the limit of large h, the Ising spins take the values that
maximize the projection of the magnetic moment along the
�100� direction. This results in the “top” two spins in every
tetrahedron �where �100� is defined as upward� pointing out-
ward, while the “bottom” two point inward. This is consis-
tent with the ice rules and hence this state is the exact ground
state for h�0.

As argued in Ref. 2, there is an ordering transition for
T�h in the limit of large J, with the ice rules applying on
both sides. One cannot straightforwardly write down a criti-
cal action of the Landau–Ginzburg–Wilson type for this
strongly constrained transition.2 Instead, we use an approach
that relies on a mapping from this classical statistical prob-
lem to a quantum problem, which we describe in Sec. II.

Away from the infinite J /T limit, the ice rules are broken
on a finite density of tetrahedra by thermal fluctuations. In
this case, the phase transition is replaced by a sharp cross-
over, which becomes more rounded off as J /T is increased
�see the numerical results of Ref. 2 and, in particular, Fig. 2�.

B. Coulomb phase

We first review a method for describing the behavior on
the disordered side of the transition.9 We consider a coarse-
grained version of the theory, where the spins Si on lattice
sites i are replaced by a continuum field B�r�, defined for all
points in space r. While this gives the appropriate behavior
deep within the disordered phase, it does not incorporate the
fixed spin length and so cannot be used to describe the tran-
sition to the ordered state.

The ice rules require that the sum of Si over sites in any
tetrahedron should vanish, which leads in the continuum
limit to the constraint that B should be divergenceless:
� ·B=0. Defining the gauge field A�r� by B=��A, the only
allowed continuum action respecting both the spatial symme-
tries and gauge invariance is

FIG. 1. �Color online� A section of the pyrochlore lattice with
the �100� crystallographic direction shown vertically. The sites of
the lattice are at the vertices of the tetrahedra and the two �100�
planes shown are one possible choice to define the mapping to a
quantum problem described in Sec. II. The points shown on these
planes indicate the lattice sites for the quantum bosons, with black
and white points, respectively, indicating the two distinct sublat-
tices. We define the �011� direction as parallel to the bold lines
drawn diagonally across the planes, connecting nearest-neighbor
sites.
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SB �
 d3r�� � A�2 + ¯ , �2�

where the omitted terms �involving higher derivatives� are
irrelevant in the renormalization-group sense.

The correlation functions of the field B are therefore
given by the standard dipolar correlation functions,

�Bi�k�Bj�k�� � �ij −
kikj

�k�2
, �3�

in momentum space, and hence,

�Bi�r�Bj�0�� �
3rirj − �r�2�ij

�r�5
, �4�

in position space.9 The long-range correlation functions of
the spins Si have identical forms.

To determine the correlations of the effective Ising spins
Si, we must take account of the four-site basis of the pyro-
chlore lattice. The correlation function decreases with in-
creasing separation r as �r�−3 and depends in sign and mag-
nitude on the orientation of r and the choice of sites from the
basis. As we explain below, we focus on the subset of sites
that lie on a particular set of �100� planes illustrated in Fig. 1.
The sites lying in such planes are shown as the points in the
figure and form two sublattices, which we label a �black� and
b �white�.

The directions along which the orientations of these spins
are constrained are specified by the unit vectors ea and eb
given by

ea = n̂�100� sin � + n̂�011� cos � , �5�

eb = n̂�100� sin � − n̂�011� cos � , �6�

where tan �=1 /	2 and n̂�011� is a unit vector in the �011�
direction, which is chosen parallel to the line joining neigh-

boring a and b sites. The spin Sa at a site on sublattice a can
be written as Sa=Saea �and similarly for b�.

We therefore find that the long-range spin-spin-correlation
function �in momentum space� for two spins on sublattice a
is given by

�SaSa� �
�k�100� + 	2k�011��2

�k�2
, �7�

while that for two spins on opposite sublattices is

�SaSb� �
k�100�

2 − 2k�011�
2

�k�2
. �8�

�In both cases, we have omitted a constant term, which upon
Fourier transforming to position space becomes a delta func-
tion at the origin, and therefore has no effect on long-
distance properties.�

Note that the correlation function for sites within the a
sublattice is maximal along a line k�100�=	2k�011� in momen-
tum space, parallel to the line �in real space� joining the
centers of tetrahedra that meet at a sites. By contrast, the
correlation function between a and b sites has no such di-
rectionality, being symmetric in �k�011�. In Sec. III B, we
will show that the same form for the correlation functions
results from using the mapping to a quantum problem: see
Eqs. �20�–�22�.

C. String picture

We now consider the ordered phase, where the coarse-
grained description is no longer appropriate, and the transi-
tion from this phase into the Coulomb phase. For T�h�J,
all moments are as aligned with the applied field as possible,
given the strong crystal field. As noted above, this implies
that the top two spins in every tetrahedron point out and the
bottom two point in, as shown on the left-hand side of Fig. 2.
As T is increased, excitations above this ground state will
start to appear, leading to a transition into the Coulomb phase
described in Sec. I B. For T ,h�J, however, a single flipped
spin is not a low-energy excitation: it breaks the ice-rule
constraint and hence costs an energy on the order of J.

In order to satisfy the ice rules, every tetrahedron must
have the same number of flipped spins at the top as at the
bottom; an example is shown on the right-hand side of Fig.
2. This in turn implies that every �100� plane of the lattice
should have the same number of flipped spins, and the
lowest-energy excitation consistent with the ice rules is a
string of flipped spins spanning the system in the �100� di-
rection. Such a string has a Zeeman energy of 2h /	3 per unit
of its length.

An isolated string can be modeled as a random walk
through the lattice in the �100� direction, with two choices at
every step. There is therefore an entropy of ln 2 per unit
length of the string, and the free energy F in the presence of
a single string is2

FIG. 2. �Color online� Two possible arrangements of the spins
on a single tetrahedron of spin-ice, where, as described in Sec. I A,
a strong crystal field constrains the spins to point either directly
toward or away from the center of each tetrahedron. Both configu-
rations have two spins pointing outward and two inwards and so
minimize the ferromagnetic interaction energy; they are said to
obey the ice rules. The arrangement on the left shows the lowest-
energy configuration in the presence of an applied magnetic field in
the �100� direction �chosen vertically upwards, as in Fig. 1�, with
the spins maximally aligned along the field. On the right-hand side,
one of the first excited states is shown, with two spins flipped with
respect to the ground state. In order to obey the ice rules, there must
be the same number of flipped spins at the top of the tetrahedron as
at the bottom, and so the number of flipped spins is the same in
each �100� plane of the pyrochlore lattice.
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F = Lz� 2
	3

h − T ln 2
 , �9�

where Lz is the length of the system in the z direction. As a
result, for Lz→�, strings are absent below a critical tempera-
ture TK=2h /	3 ln 2. For T�TK, however, the entropic gain
from introducing these string excitations into the system out-
weighs their Zeeman energy cost, giving a phase transition
into the Coulomb phase.

As noted previously,2 this transition has a strongly asym-
metric character and is an example of a Kasteleyn
transition.12,13 On the ordered side of the transition, fluctua-
tions are completely suppressed and the transition appears to
be of first order, while there are fluctuations in the Coulomb
phase and a divergent correlation length as the transition ap-
proaches, as for a continuous transition.

The entropic argument as presented so far is only valid in
the limit of infinite J, where the ice rules are strictly enforced
on every tetrahedron. Finite J /T allows thermal excitations
that break the ice rules at a small density of tetrahedra, lead-
ing to a characteristic string length Lc�e	J/T, where 	 is a
numerical constant. For Lc
Lz, this characteristic length re-
places Lz in Eq. �9�. The effect of finite J /T is therefore
similar to the effect of a finite system size, replacing the
phase transition by a crossover, whose sharpness increases
with J /T.

In the infinite-J limit, the description in terms of strings
remains valid for all h: any state obeying the ice rules can be
constructed by starting from the h→� configuration and
flipping all spins along a set of strings, with each spanning
the system in the �100� direction. In other words, there is a
one-to-one mapping from spin configurations obeying the ice
rules to string configurations.2

II. BOSON WORLD LINES

In order to understand the phase transition in detail, it is
convenient to treat the strings as world lines for bosons mov-
ing in a two-dimensional space, with the �100� direction
taken as imaginary time. The classical partition function is
then interpreted as the partition function for a quantum prob-
lem, with the length of the system in the imaginary-time
direction corresponding to the inverse temperature. In the
thermodynamic limit we therefore have a two-dimensional
quantum problem at zero temperature.

Since the strings span the system in the �100� direction,
the boson number is conserved and there are no closed loops,
which would correspond to particle-antiparticle pairs. The
mapping therefore provides a way to view the Kasteleyn
transition as the zero-temperature quantum phase transition
between the vacuum and a Bose–Einstein condensate, as the
chemical potential for bosons � increases through some criti-
cal value �0.

The vacuum of bosons then corresponds to the saturated
state of the magnet at high field or low temperature. The
lowest excitations in the quantum problem are single par-
ticles, which correspond to isolated strings. These have finite
energy above the ground state and so the correlation func-
tions are not long ranged. In fact, since the classical observ-

ables map to operators that are diagonal in the boson-number
basis, their connected correlation functions are strictly zero
in this phase.

In the other phase, with a Bose condensate, there is a
Goldstone mode corresponding to the broken phase-rotation
symmetry, leading to power-law correlation functions for the
spins. We will show in Sec. III that the correlations have the
expected dipolar �three-dimensional� spatial dependence �a
simplified treatment has been outlined previously2�. These
long-range correlations remain as the field is decreased to
zero, when they agree with the predictions of Sec. I B.

In Sec. II C, we will provide further evidence for the iden-
tification of the Coulomb phase with the condensed phase of
the bosons by showing that the off-diagonal long-range order
in this phase can be interpreted in terms of deconfinement in
the Coulomb phase. As conjectured earlier,2 and as we will
demonstrate explicitly in Sec. III A, the condensation phase
transition has dynamical critical exponent z=2, and so our
�2+1�-dimensional system is at its upper critical dimension.
Thermodynamic results for the boson problem15–17 can then
be carried over directly to the spin system.2

As an aside, we note that the effect of finite J /T can also
be straightforwardly understood using this picture. Tetrahe-
dra that break the ice rules, which appear with nonzero den-
sity away from the infinite-J limit, become the ends of
strings. In the quantum Hamiltonian, these are generated by
source terms for the boson operator, which break the phase-
rotation symmetry and eliminate the phase transition. As
noted previously, a large but finite J /T therefore has the ef-
fect of replacing the phase transition with a sharp crossover.

A. Effective Hamiltonian

We will now present a more detailed analysis of the map-
ping from the problem defined in terms of spins to a quantum
problem of bosons, which will allow the calculation of cor-
relation functions, for both zero and nonzero field. The map-
ping essentially follows the standard procedure of using a
transfer matrix to connect the degrees of freedom in one
layer of the system to those in the next, followed by inter-
pretation of the transfer matrix as the exponential of a quan-
tum Hamiltonian. However, care must be taken to account
properly for the pyrochlore structure.

We first divide the lattice sites by their z coordinates,
which we take to be measured along the �100� direction.
Each spin in the pyrochlore lattice has neighbors only in the
same plane and in those immediately above and below. The
partition function can therefore be written in terms of a trans-
fer matrix whose rows and columns are labeled by the pos-
sible configurations of a given plane of the lattice.

The structure of pyrochlore is such that the positions of
the sites in neighboring �100� planes do not coincide, and it
is in fact necessary to translate by four layers before the
lattice structure in a plane repeats. This is illustrated in Fig.
3, which shows the projection of the pyrochlore lattice onto

the �011̄� plane. The thick horizontal lines show the positions
of two nearest planes with the same site positions, which are
separated by three planes with sites in different positions. We
therefore define a new transfer matrix corresponding to the
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product of four elementary transfer matrices, which relates
two such planes with the same lattice structure.

This transfer matrix T can then be interpreted in the stan-
dard way as the exponential of the Hamiltonian matrix H by
writing T=e−H��, where �� is a step in imaginary time. The
trace over a product of transfer matrices corresponds to the
standard sum over histories giving the partition function for
the two-dimensional quantum problem.

While it is possible to construct the matrix T explicitly by
considering all arrangements of the spins in the three inter-
mediate layers and therefore in principle possible to find H
exactly, we do not expect this to be necessary for our pur-
poses. Instead, we will attempt to understand the general
form of the Hamiltonian based on the symmetries of the
problem, while restricting to the simplest version that is nec-
essary to describe the large-scale behavior correctly.

First note that, since it describes a classical statistical
model, the matrix elements of T are required to be real and
non-negative. We can therefore restrict to the case where H
is also a real matrix. However, as is often the case for clas-
sical statistical problems, the transfer matrix and hence
Hamiltonian are not required to be Hermitian. In fact, we
will find �see Secs. III B and IV C� that the sublattice struc-
ture of the correlation functions �see Sec. I B� is crucially
dependent on the non-Hermitian terms in the Hamiltonian,
and so we will pay particular attention to such terms.

The fact that T has all positive elements implies that its
eigenvalue with largest real part—corresponding to the
ground-state energy of H—is unique �within each boson-
number sector�, is positive, and has an eigenvector with all
positive weights. This can be interpreted as meaning that the
bosonic Hamiltonian H is unfrustrated, which is consistent
with our assumption of a superfluid ground state.

As described above, we will represent the state of a given
layer by comparing to a reference configuration in which all
spins have a positive projection on the +z axis. This configu-
ration will be referred to as the vacuum of bosons, while
flipped spins are mapped to the presence of a boson. The
bosons therefore have on-site hard-core repulsion by con-
struction, and as noted above, the ice rules enforce conser-
vation of boson number.

We define the bosonic annihilation and creation operators
bi and bi

† for sites i in the two-dimensional lattice. The hard-
core constraint on the bosons is implemented by the operator
identities bibi=bi

†bi
†=0 so that the number operator ni=bi

†bi
is restricted to the values 0 and 1. �Operators for different
sites commute.�

We will divide the Hamiltonian H into potential terms V
and kinetic terms K by writing

H = V + K �10�

and address these two parts in turn.
The simplest contribution to V is a chemical potential

term V0 giving the energy cost of adding a boson world-line
to the system. In the presence of an applied magnetic field
along the +z axis, every flipped spin has Zeeman energy cost
2heff so that we can write

V0 = − ��
i
�ni −

1

2

 , �11�

where �
−h. The classical model is symmetric under
h→−h along with an inversion of all the spins. After map-
ping to the quantum problem, this takes �→−� and ex-
changes particles and holes; the constant �− 1

2 � has been cho-
sen to make this symmetry explicit. A vanishing applied field
corresponds to half filling in the boson representation, and at
this point the model is particle-hole symmetric.

Interactions between the bosons are dominated by the
hard-core repulsion, but there will also be off-site interac-
tions that contribute to V. These terms are necessarily Her-
mitian and we will not consider them further.

The kinetic terms K will include both quadratic hopping
and more complicated correlated hopping terms and, as we
have observed above, are not required to be Hermitian. For a
single boson, the physical origin of the non-Hermitian terms
is clear from the lattice structure. As shown in Fig. 3, a string
starting on a given site has a tendency to hop in one direction
in preference to the opposite direction, and it is this directed
hopping that requires the Hamiltonian to be non-Hermitian.

Note, however, that a hole surrounded by particles hops
preferentially in the same direction as an isolated particle, as
can be checked by exchanging particles and holes in Fig. 3.
As a result, the quadratic hopping term,

K1 = − �
ij

tijbi
†bj , �12�

is required to be symmetric under bi↔bi
† so that tij = tji and

K1 is Hermitian. The same conclusion follows from the re-
quirement of particle-hole symmetry when h=0.

We must therefore include higher-order terms in order to
describe the directed hopping, and so we seek correlated

�100�

�011�

FIG. 3. Projection of the pyrochlore lattice onto the �011̄� plane.
The sites of the pyrochlore lattice are at the vertices. The tetrahedra
appear as triangles, and the dashed lines indicate tetrahedra that lie
out of the plane. The two thick horizontal lines correspond to the
thick lines shown in Fig. 1 and represent one choice for the �100�
planes that define the quantum problem. The distance between them
in the �100� direction is one step in imaginary time ��. The points
show a possible path for a string between these two planes, and the
arrows indicate all possible locations for the end of the string, given
its starting position. There are more points to the left of the starting
location than to the right, and so a boson at this point has a prefer-
ence for leftward hopping.
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hopping terms that are particle-hole symmetric. The simplest
such term is

K2 = − �
ij�

wij��n� − 1
2�bi

†bj , �13�

where wij�=−wji� and so K2=−K2
†. Note that near the transi-

tion, where the density is small, K2 reduces to a quadratic
hopping term of the form of K1, but with effective directed
hopping tij

eff=− 1
2��wij�.

We therefore take V=V0 and K=K1+K2. The coefficients
tij and wij� are required to be real and are chosen so that, as
noted above, the hopping is unfrustrated.

B. Symmetries

In constraining the general form of terms that can appear
in the effective Hamiltonian and the corresponding con-
tinuum action, it is important to consider symmetries inher-
ited from the original problem defined on the pyrochlore
lattice. The choice of z as the imaginary-time axis and of the
particular �100� planes as described in Sec. II A reduces the
symmetry group somewhat.

This is illustrated in Fig. 4, which shows the pyrochlore
lattice projected onto the �100� plane. It can be seen imme-
diately from the arrangement of tetrahedra that nearest neigh-
bors in the x direction are equivalent, whereas those in the y
direction are not. The lattice can therefore be represented as
two interpenetrating square lattices, indicated by the filled
and empty circles. We define the elementary translation op-
erators Kx and Ky, which take sites into their nearest equiva-
lent neighbors in the x and y directions, respectively, and
which are symmetries of the Hamiltonian. �Note that Kx and
Ky in fact translate by the same absolute distance, although
Kx connects neighbors, while Ky connects next neighbors in
the y direction.� We also define the operation Kz, a transla-
tion by four layers in the z direction, which corresponds to
time-translation symmetry in the quantum problem.

One can in addition see that there is a reflection symme-
try, which we label Rx, about the red line labeled a, which
takes x→−x but does not exchange sublattices. There is
similarly a reflection symmetry Ry about the green line la-
beled b, taking y→−y, but in this case the symmetry ex-
changes the two sublattices.

Besides Rx and Ry, there is a third reflection symmetry,
which involves reflection in the blue line labeled c, and also
takes y→−y. This does not affect the sublattices but changes
the height of the tetrahedra: the tetrahedra drawn with thick
lines in the figure are exchanged with those drawn with dot-
ted lines and those with thin lines are exchanged with those
with dashed lines. This amounts to a reflection in the x-y
plane �i.e., z→−z�, which taken together with the reflection
about the x direction constitutes a third reflection symmetry,
Iy. In three dimensions, Iy is a rotation by 180° about the x
direction, while, after mapping to the quantum problem de-
fined in two dimensions, it becomes a y reflection accompa-
nied by a time-reversal operation.

Finally, consider once more the elementary transfer ma-
trix linking one �100� plane to that immediately above it. As
explained above, this matrix does not act within the quantum

Hilbert space, since it relates sites on two different �two-
dimensional� lattice structures. Instead, we define the opera-
tor T1/4, given by this elementary “evolution” operator fol-
lowed by a rotation by �

2 about the cross labeled d in Fig. 4.
This composite transformation returns the sites to their origi-
nal locations and hence acts within the Hilbert space. It is
also clear that it commutes with the Hamiltonian since the
original choice of a particular �100� plane was arbitrary.

As for the full transfer matrix T, we will not write down
the precise form of the operator T1/4, and we will not attempt
to find the general constraints it implies for the Hamiltonian.
Instead, we will merely note that, in a coarse-grained de-
scription, it has a particularly simple effect on operators that
do not distinguish the two sublattices, giving only a �

2 rota-
tion in the x-y plane.

C. Off-diagonal long-range order and deconfinement

As we have explained above, we identify the Coulomb
phase of the classical statistical model with the condensed
phase of the quantum bosons. In Sec. III B, we will show

y

x

a

b

c

d

FIG. 4. �Color online� Projection of the pyrochlore lattice onto

the �100� plane with the x and y axes corresponding to the �011̄�
and �011� directions, respectively. Each tetrahedron is shown as a
square with a line joining the two uppermost points. The weight of
the lines indicates the height of a given tetrahedron in the �100�
direction, with thick lines highest, followed by thin, dashed, and
dotted lines, respectively. The structure is periodic so that another
tetrahedron of the same orientation lies four layers below �and
above� each tetrahedron that is shown. The circles indicate sites in a
particular �100� plane, which, after the mapping to the quantum
problem, become the sites for the bosons. The filled and empty
circles correspond to the black and white points shown in Fig. 1 and
denote the two sublattices, which are distinguished by the structure
of the surrounding lattice. The thick red and green lines �labeled a
and b� show planes of reflection symmetry, while there is a sym-
metry under rotation by 180° about the blue line �labeled c�. Rota-
tion by �

2 about the cross �labeled d� and translation in the �100�
direction maps sites in one �100� plane into those in the plane im-
mediately above.
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that the long-range correlations in the quantum model repro-
duce those of the classical model, supporting this identifica-
tion. Here, we present a qualitative argument based on the
concept of off-diagonal long-range order �ODLRO�.

First, note that while the quantum model has �bi��0 in
the condensed phase if total boson number is allowed to
fluctuate, there is no equivalent order parameter in the Cou-
lomb phase. Under the mapping we use, boson number is
strictly conserved and a nonzero order parameter �bi� is im-
possible. Spontaneous symmetry breaking in the quantum
problem is therefore hidden in the statistical-mechanics
equivalent. We instead consider ODLRO: in the condensed
phase, the correlation function �bi

†bj� has a nonzero limit for
large separation of the sites i and j, given by the square
modulus of the order parameter.

Translating this quantum expectation value into the lan-
guage of the statistical problem gives �bi

†bj��Zij /Z. Here,
with � the quantum inverse temperature �to be taken to in-
finity�, Z=Tr T� is the partition function, and Zij is given by

Zij = Tr T�bi
†bj . �14�

This can be interpreted as the partition function, calculated in
the presence of one string �boson world line� that ends at the
point j on a certain arbitrary �100� plane and another that
begins at the point i on the same plane.

This is most simply interpreted by returning to the repre-
sentation in terms of solenoidal fields described in Sec. I B.
A string ending at a given point corresponds to a tetrahedron
on which the ice rules are broken so that the coarse-grained
field B�r� has nonzero divergence. We therefore have two
monopoles of opposite “charge” separated by a large dis-
tance.

In a confining phase of the field B, the energy increases
linearly with separation so that Zij /Z is exponentially sup-
pressed for large separations. In the Coulomb phase, how-
ever, monopoles are deconfined, and Zij /Z approaches a
constant, given by the monopole fugacity, for large separa-
tion. The ODLRO in the quantum superfluid is therefore
equivalent to monopole deconfinement,18 in agreement with
our identification of the Coulomb and superfluid phases.

III. CONTINUUM THEORY

In this section, we show that the long-range form of the
correlation functions in spin-ice, with and without an applied
field, can be found using an effective continuum theory for
the hard-core bosons. We also find a critical theory for the
Kasteleyn transition and show that, although the directed
hopping is necessary for the appropriate long-range correla-
tion functions, it does not affect the critical behavior. In Sec.
IV, we show that the same long-range behavior can be found
directly from the microscopic quantum Hamiltonian by using
a large-S expansion.

Our approach here is to start with the Hamiltonian H and
write down the most general continuum action consistent
with the symmetries of the hard-core boson problem, de-
scribed in Sec. II B. In the Appendix, we sketch an approach
that would in principle allow such a continuum action to be
derived directly. The action is expressed in terms of bosonic

fields corresponding to the hard-core boson operator b in the
limit where the spatial coordinates x and y and the imaginary
time � are taken as continuous. Since it is important to pre-
serve the two-sublattice structure, we define �c-number�
fields �a and �b corresponding to the two sublattices.

Besides the spatial symmetries, there is a phase-rotation
symmetry arising from the conservation of the boson num-
ber, which leaves the action invariant under the simultaneous
transformations �a→�aei� and �b→�bei�. Note that only
the total number of bosons on both sublattices is conserved,
and so terms such as �a

��b are allowed by this symmetry.
We now consider each of the symmetries defined in Sec.

II B in turn. The translations Kx, Ky, and Kz shift x, y, and �
�infinitesimally, in the continuum limit� and so terms with
explicit dependence on the coordinates are forbidden.

As for the reflection symmetries, Rx simply takes
x→−x, while Ry takes y→−y, simultaneously exchanging
the two sublattices. The derivative operator �x�� /�x can
therefore only appear in the combination �x

2, but a single y
derivative can appear in a combination such as ��a−�b��y.

In the continuum theory for standard lattice boson
models,19 one also generically has symmetry under time re-
versal accompanied by particle-hole exchange: ��→−�� and
�→��, and, at points where the theory is particle-hole sym-
metric, such as half-filling for hard-core bosons, the two
transformations are separately symmetries. In our problem,
the non-Hermitian nature of the Hamiltonian means that this
is no longer the case. Instead, as we show in the Appendix,
the reflection operation Iy leads to a symmetry under �y→
−�y, ��→−��, and �a,b→�a,b

� . At half-filling, the particle-
hole transformation �a,b→�a,b

� is again a separate symme-
try, which we label Iph.

The most general Lagrangian density that is consistent
with these symmetry constraints, up to quadratic order in the
fields and second derivatives �and omitting terms that are
total derivatives�, can be written as

L = r1��a
��a + �b

��b� + r2��a
��b + �b

��a�

+ i����a
����a + �b

����b� + i�����a
����b + �b

����a�

+ i�y��a
��y�a − �b

��y�b�

+ �������a
������a� + ����b

������b��

+ ��� �����a
������b� + ����b

������a�� + ¯ , �15�

where a sum over �� �x ,y ,�� is implied. At half-filling,
particle-hole symmetry implies ��=���=�y =0. �Note that we
so far have made no use of the symmetry T1/4, which has a
nontrivial effect on the sublattice labels a and b.�

To evaluate the correlation functions, it is also necessary
to find expressions for the boson number operators in terms
of the fields �a and �b, and symmetry considerations can
again be used. Defining fields na and nb representing the
number fluctuations on the two sublattices, we have na↔nb
under Ry and na,b→−na,b under Iph; they are unaffected by
all other symmetries. �Note that these are the number fluc-
tuations; the actual number operators also contain constant
terms, which will cancel when calculating connected corre-
lation functions.� These symmetries are not, however, suffi-
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cient to determine the number operators completely. We find,
for instance, that na+nb is given by a linear combination of
i��a

����a+�b
����b�, i��a

����b+�b
����a�, and i��a

��y�a
−�b

��y�b�, where the relative coefficients cannot be deter-
mined by this method.

A. Critical theory

Using the Lagrangian density given in Eq. �15�, we can
address the behavior at the Kasteleyn transition from the
vacuum to a phase with a Bose–Einstein condensate. This
necessarily occurs away from half filling, where there is no
particle-hole symmetry �although an identical transition, re-
lated by a particle-hole transformation, occurs at unit filling�.
At the transition, both �a and �b acquire nonzero expectation
values, breaking phase-rotation symmetry.

It is convenient to transform from �a and �b to a new
basis that diagonalizes the constant quadratic part of L. Due
to the symmetry Ry, which exchanges the two sublattices,
the appropriate fields are ��=�a��b, and the constant part
of the Lagrangian density then becomes

Lconst = r+�+
��+ + r−�−

��− + ¯ . �16�

The difference of the two constants r+ and r− is given by r2
in Eq. �15� and will generically be nonzero. Both r+ and r−
will be positive in the vacuum phase and will grow smaller
as the transition is approached. At the transition, one of the
two �strictly, its renormalized value� changes sign, and the
corresponding field �� acquires a nonzero expectation value.
As a result, ��a� and ��b� both become nonzero, and with the
same magnitude.

The theory can then be rewritten in terms of the critical
field �+, say, while the other ��−�, which still has a “mass”
term is integrated out. To determine the form of this critical
theory, consider the quadratic terms with single derivatives.
Rewriting the term in L with one �y derivative in terms of
�� gives �a

��y�a−�b
��y�b��+

��y�−+�−
��y�+. Integrating out

the field �− leaves only a term of the form ��y�+
����y�+�. On

the other hand �as long as ��+����0�, there will be a term
�+

����+ in the Lagrangian density, which remains after �− is
integrated out.

Furthermore, since the field �+ has no dependence on the
sublattice structure, we make use of the symmetry T1/4 to
require invariance under a �

2 rotation in the x-y plane. �The
critical theory therefore has an emergent symmetry under
this operation and in fact under continuous rotations in the
x-y plane.� The critical theory, which is written only in terms
of �+, then takes the form

Lcritical = r+�+
��+ + i�+

����+ + �+�� j�+
���� j�+� + ¯ ,

�17�

where a sum over j� �x ,y� is implied: the second time de-
rivative has been dropped. This therefore describes the stan-
dard vacuum transition of bosons, with dynamical critical
exponent z=2, as conjectured previously.2

B. Condensed phase

We can also use the continuum theory of Eq. �15� to cal-
culate correlation functions within the condensed phase.

Once the fields �a and �b acquire nonzero expectation val-
ues, they are most conveniently described in terms of phase
and amplitude modes by writing

�a = 	�0 + ��aei��+�� and �b = 	�0 + ��bei��−��,

�18�

where �0 is the �real� condensate density, and ��a,b, �, and �
are real fields.

The amplitude modes, ��a and ��b, and the relative phase
mode, �, correspond to gapped excitations, while the overall
phase � is a Goldstone mode, resulting from the broken
phase-rotation symmetry of the condensate. Only this gap-
less mode can contribute to the long-range correlation func-
tions, and we therefore integrate out the remaining gapped
modes. While this process can be carried out explicitly, it is
clear from symmetry considerations that the general form for
the resulting Lagrangian is simply L�= �����2+c2�� j��2

+¯, where a sum over j� �x ,y� is again implied. The con-
stant c, giving the speed of sound in the condensate, cannot
be determined by symmetry.

In terms of the field �, the number operators take a simple
form: symmetry requires that we have

na � ��� + v�y�� and nb � ��� − v�y�� , �19�

but does not fix the magnitude or sign of v. Taking the Fou-
rier transform therefore gives for the correlation functions

�nana� �
�� + vky�2

�2 + c2�kx
2 + ky

2�
, �20�

�nbnb� �
�� − vky�2

�2 + c2�kx
2 + ky

2�
, �21�

�nanb� �
�2 − v2ky

2

�2 + c2�kx
2 + ky

2�
. �22�

After the identification of � with k�100� and ky with k�011�,
these become exactly equivalent to Eqs. �7� and �8�, derived
in Sec. I B using the mapping to a solenoidal field. Note that
Eqs. �7� and �8� apply only in the absence of an applied
magnetic field, whereas Eqs. �20�–�22� are valid throughout
the Coulomb phase with the dependence on h appearing in
the constants c and v. These cannot be determined by this
method, however, since the quantum mapping explicitly re-
duces the symmetry of the three-dimensional problem by
picking out the z-direction.

As the vacuum transition is approached from the con-
densed phase, the speed of sound decreases continuously to-
ward zero, and the standard results for the boson problem15

give c�	�−�0. This leads in spin-ice to anisotropy in the
correlation functions between the z direction and the x and y
directions, with relative scale c�	hK−h, where hK is the
critical field at the Kasteleyn transition.

IV. LARGE-S CALCULATION OF CORRELATION
FUNCTIONS

We now present an alternative calculation of the spin-
spin-correlation function in the Coulomb phase, starting
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from the Hamiltonian in the bosonic representation. Our ap-
proach is to rewrite the hard-core bosons in terms of S= 1

2
spins and then use a spin-wave approximation based on a
large-S expansion.

A. Holstein–Primakoff expansion

We begin with the effective Hamiltonian described in Sec.
II A,

H = V0 + K1 + K2

= − ��
i
�ni −

1

2

 − �

ij

tijbi
†bj − �

ij�

wij��n� − 1
2
bi

†bj ,

�23�

where the coefficients �, tij, and wij� are real and obey tij
= tji and wij�=−wji�. We first map the hard-core bosons into
S= 1

2 spins by identifying ni�bi
†bi=

1
2 −�i

z, bi
†=�i

−, and bi
=�i

+, where �i
�=�i

x� i�i
y. �We use the symbol � rather than

S to avoid confusion with the classical spins of the original
spin-ice Hamiltonian to which these quantum spins are not
simply related. In particular, the labels x, y, and z do not
correspond to the directions of the classical spins or the crys-
tal structure.� In terms of spins, the chemical potential be-
comes an applied field along the z direction, while the kinetic
terms produce couplings between the x and y components of
nearby spins.

We now extend this model to S�
1
2 so that �i become

spin-S operators for general S. For large S, the Holstein–
Primakoff transformation can be used to expand around a
classical ground state. Such states have all spins parallel and
at an angle � to the field, and we choose the state where they
lie in the x-z plane. Rotating to new axes aligned with the
classical spins, we write

�i
z = �̃i

z cos � − �̃i
x sin � , �24�

�i
x = �̃i

z sin � + �̃i
x cos � , �25�

�i
y = �̃i

y . �26�

The Holstein–Primakoff transformation is given by

�̃i
+ = 	2S	1 −

ai
†ai

2S
ai, �27�

�̃i
− = 	2Sai

†	1 −
ai

†ai

2S
, �28�

�̃i
z = S − ai

†ai, �29�

where �̃i
�= �̃i

x� i�̃i
y, and ai and ai

† are boson operators obey-
ing �ai ,aj

†�=�ij. �Note that these bosons are not simply re-
lated to the original hard-core bosons of the quantum prob-
lem.�

For large S, the square roots can be expanded as power
series in S−1. While such an expansion should clearly not be

expected to give quantitatively accurate results for the case
S= 1

2 , we will show that it already captures the expected
physics at quadratic order in the operators ai and ai

†, even at
half filling, where the hard-core nature of the bosons is most
important.

The classical ground state can be found by applying Eqs.
�24�–�29� to the Hamiltonian H and keeping only those
terms in the expansion that contain no boson operators. This
gives

H0 = N�S cos � − S2�
ij

tij sin2 � − S3�
ij�

wij� cos � sin2 � ,

�30�

where N is the number of sites in the lattice. The final term
vanishes because wij�=−wji�. Let t0=� jtij, which can be
shown to be independent of i using a combination of the
transformations Kx, Ky, and Ry, defined in Sec. II B. The
minimum of H0 is given by choosing

cos � = −
�

2St0
, �31�

provided that −2St0
�
2St0, or equivalently, that the
chemical potential lies within the dispersion band. At the
transition into the vacuum, the chemical potential goes down
through the bottom of the band; within the vacuum phase,
�
−2St0, and the minimum is instead given by cos �=1.

With this choice for �, the terms in the expansion that are
linear in boson operators cancel. The next terms are qua-
dratic in the boson operators and, as usual for the Holstein–
Primakoff expansion, include terms of the form aiaj and ai

†aj
†

as well as number-conserving terms such as ai
†aj. After some

algebra, these quadratic terms can be written as

H2 =
1

2�
ij

�ai
† ai ��Aij + Bij Cij − Dij

Cij + Dij Aij − Bij

�aj

aj
† 
 , �32�

where

Aij = 2St0�ij − Stij�1 + cos2 �� , �33�

Bij = 2S2 cos2 ��
�

wij� + S2 sin2 ��
�

�w�ij − w�ji� , �34�

Cij = Stij sin2 � , �35�

Dij = − S2 sin2 ��
�

�w�ij + w�ji� . �36�

Note that Aij, Cij and Dij are symmetric in their indices,
while Bij is antisymmetric. The non-Hermitian nature of H is
therefore reflected in H2: taking the Hermitian conjugate of
H2 gives Bij→−Bij and Dij→−Dij.

B. Bogoliubov transformation

The quadratic Hamiltonian H2 can be diagonalized using
the standard Bogoliubov transformation of bosons, in which
some care must be taken because H2 is non-Hermitian. First
define the column vector � so that 	i=ai for 1� i�N and
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	i=ai−N
† for N+1� i�2N. The commutation relations be-

come �	i ,	 j
†�=�ij, where � is a 2N�2N diagonal matrix

with +1 for the first N elements on the diagonal and −1 for
the remainder. We transform from � and its conjugate �† to
�̃ and �̄̃ �which are not Hermitian conjugates� by

� = V�̃ and �† = �̄̃W . �37�

The matrices V and W are not Hermitian conjugates but are
instead related to preserve the commutator: �	̃i , 	̄̃ j�=�ij so
that W=�V−1�.

The quadratic Hamiltonian H2 can be written as

H2 =
1

2
�†H� �38�

�where a matrix product is implied�, so we must choose V
such that H̃=V−1�HV is a diagonal matrix, giving

H2 =
1

2
�̄̃�H̃�̃ . �39�

Note that since neither H nor �H is Hermitian, the elements

of H̃ are not necessarily real.
Nonetheless, it can be shown20 that for every eigenvalue

�i of �H, there is a corresponding eigenvalue −�i. After ap-
propriately ordering the eigenvalues and eigenvectors, one
can therefore identify the elements 	̃i as annihilation
�1� i�N� and creation �N+1� i�2N� operators and write

H2 = �
i=1

N

�iā̃iãi, �40�

where �i are the eigenvalues with positive real parts �and a
real constant has been dropped�. Note that ā̃i is not the Her-
mitian conjugate of ãi and so that number operator ā̃iãi is not
Hermitian. The commutation relations nonetheless ensure
that ãi and ā̃i act in a bona fide Fock space, and that the
number operator has real non-negative-integer eigenvalues.

In our case, where the Hamiltonian and hence Hij are
invariant under the translation operators Kx and Ky, the
eigenvectors can be assigned to momenta within the reduced
Brillouin zone. This contains 1

2N points, and we therefore
expect two bands, of which only the lower band will be
important for the long-range properties with which we are
concerned. Let ãk and ā̃k be the operators for a state in the
lower band with �crystal� momentum k, and let �k be the
corresponding energy. These lower-band excitations are the
phonon modes of the condensate and will therefore have a
linear spectrum,

�k = 	cx
2kx

2 + cy
2ky

2, �41�

where cx and cy are the phonon velocities.
In terms of the coefficients defined in Eqs. �33�–�36�, cx

and cy are given by

cx
2 = 2St0 sin2 ��

i

xi
2�Ci0 − Ai0� , �42�

cy
2 = 2St0 sin2 ���

i

yi
2�Ci0 − Ai0�

+
�� j

yj�Bj0 − Dj0��2

��
�− 1�y��A�0 + C�0�� . �43�

While the full spectrum is not necessarily real, the assump-
tion that the ground state of the system is a stable superfluid
implies that the phonon velocities are real.

C. Correlation functions

The connected part of the spin–spin-correlation function
in spin-ice, Cc�r ,r� ;z�, for spins at points r and r� in their
respective �100� planes and separated by z in the �100� di-
rection, translates in the hard-core boson language to the
time-ordered number-number correlation function. At inverse
temperature � �which we will later take to infinity�, the ex-
pectation value of the number operator at site i is

�ni� =
1

Z
Tr�T�ni� , �44�

where Z=Tr T� is the partition function. Note that the op-
erators here refer to the hard-core bosons bi, rather than the
Holstein–Primakoff bosons ai. The pairwise correlation func-
tion �including disconnected parts� is

C�i, j ;z� = �
1

Z
Tr�T�−zniTznj� for z � 0

1

Z
Tr�T�−�z�njT�z�ni� for z 
 0.� �45�

�Note that the relative units for distance in the �100� direc-
tion and within the �100� plane are arbitrary, and so we have
chosen to take the unit of z as four layers in the �100� direc-
tion.�

First observe that exchanging the two sites i and j is, as
expected, equivalent to taking z→−z; we therefore focus on
z�0.

We rewrite the correlation function using a spectral rep-
resentation by diagonalizing the transfer operator as

T = �
E

�E�e−E�E� , �46�

where E labels a complete set of eigenstates of the Hamil-
tonian. This gives

�ni� =
1

Z�
E

�E�ni�E�e−�E, �47�

and

C�i, j ;z� =
1

Z �
E,E�

�E�ni�E���E��nj�E�e−E��−z�e−E�z, �48�

which reduce, in the zero-temperature limit, to
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�ni� = �E0�ni�E0� , �49�

and

C�i, j ;z� = �
E

�E0�ni�E��E�nj�E0�e−�E−E0�z, �50�

where E0 labels the ground state. The term in the sum with
E=E0 is independent of z and cancels when the connected
correlation function Cc is calculated,

Cc�i, j ;z� = C�i, j ;z� − �ni��nj� , �51�

= �
E�E0

�E0�ni�E��E�nj�E0�e−�E−E0�z.

�52�

The translation symmetry of the Hamiltonian means that
we can choose a set of eigenstates �E� that are also eigen-
states of the translation operators Kx and Ky. In particular,
the eigenvalue of the translation operators in the ground state
will be +1. We let na and nb denote the number operators for
the sites belonging to each of the two sublattices in the unit
cell at r=0. The translation operators can then be used to
give

Cc�i, j ;z� = �
E�E0

�E0�n�i
�E��E�n�j

�E0�e−�E−E0�zeiKE·rij ,

�53�

where �i� �a ,b� denotes the sublattice that site i belongs to,
rij is the separation of sites i and j within the �100� plane, z
is their separation in the �100� direction, and KE is the total
momentum of the state E.

The matrix elements �E0�n��E� and �E�n��E0� �which are
not complex conjugates, because of the non-Hermitian
Hamiltonian� are to be calculated consistently within the
Holstein–Primakoff expansion. Using the mapping to quan-
tum spins and Eqs. �24�–�29�, we have

ni = − S cos � +
1

2
+	S

2
�ai + ai

†�sin � + ¯ , �54�

where the omitted terms are at least quadratic in the boson
operators. The matrices V and W can then be used to express
ai and ai

† in terms of ãk and ā̃k using Eq. �37�.
The quadratic approximation to the Hamiltonian H2 has

eigenstates with definite numbers of quasiparticle excita-
tions, and the operator ni, which is linear in ãk and ā̃k, can
only create or annihilate a single quasiparticle. The constant
terms in the expansion for ni will therefore always cancel
when calculating off-diagonal matrix elements: these will in-
volve only states E with a single quasiparticle. If the momen-
tum of this quasiparticle is k, then KE=k, and one can write

�E0��a� + a�
†��E� = f��k� and �E��a� + a�

†��E0� = f���k� .

�55�

The connected correlation function can then be written in
the form of an integral over k,

Cc�i, j ;z� =
S

2
sin2 �
 d2k

�2��2 f�i
�k�f�j

� �k�e−�kzeik·rij . �56�

Note that if f� and f�� were complex conjugates, as would be
the case for a Hermitian Hamiltonian, this expression would
be symmetric under i↔ j. The non-Hermitian nature of the
Hamiltonian is therefore crucial to the directional depen-
dence of the correlation functions, as noted in Sec. II A.

We have so far restricted to z�0; the form for z
0 is
given by exchanging i and j or equivalently by exchanging
�i and � j and taking k→−k. The Fourier transform to mo-
mentum and frequency spaces is therefore given by

C����k,�� =
S

2
sin2 �� f��k�f��

� �k�

i� + �k
+

f���− k�f���− k�

− i� + �k
� .

�57�

As in the square-lattice case,2 one finds f��k��	�k� for
small �k�. The anisotropy in the Hamiltonian leads, in this
case, to a dependence on the direction of k of the form

f��k� �
�ivky + �k

	�k

�58�

�and the same for f��, where �k is the dispersion given in Eq.
�41�, v is a real constant, and the sign of the imaginary part
is + when � is in the a sublattice and − for the b sublattice.

The characteristic velocity v can be written as

v = 2St0 sin2 �
� j

yj�Bj0 − Dj0�

��
�− 1�y��A�0 + C�0�

, �59�

in terms of the coefficients defined in Eqs. �33�–�36�.
One therefore finds, for the connected correlation function

within the same sublattice,

Caa�k,�� �
S

2
sin2 � ·

cx
2kx

2 + �cy
2 − v2�ky

2 − 2vky�

�2 + �k
2 , �60�

with v→−v for Cbb. For opposite sublattices, we have in-
stead

Cab�k,�� �
S

2
sin2 � ·

cx
2kx

2 + �cy
2 + v2�ky

2

�2 + �k
2 . �61�

It can immediately be seen that the former expression has a
spatial asymmetry and hence a preferential direction, while
the latter is symmetric in �ky.

These expressions are in fact exactly equivalent to those
given in Eqs. �7� and �8� in Sec. I B and in Eqs. �20�–�22� in
Sec. III B, as can be shown by subtracting �S /2�sin2 � from
both. �This term, which is independent of k and �, becomes
a delta function in real space and hence has no effect on the
long-range behavior.�

D. Intermediate asymptotics near transition

As the phase transition is approached from the superfluid,
the chemical potential decreases toward the bottom of the
band and Eq. �31� implies cos �=1 at the transition point. It
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follows that the phonon velocities cx and cy vanish like the
square root of the chemical potential as the transition is ap-
proached, as noted in Sec. III B. There is therefore an inter-
mediate regime of behavior within the superfluid but close to
the transition, where sin �� �k��1 and the linearized disper-
sion relation in Eq. �41� is no longer valid.

From Eqs. �33�–�36�, one finds that Cij and Dij vanish as
sin �→0, and so the only terms that remain in the quadratic
Hamiltonian H2 are those that conserve �Holstein–
Primakoff� boson number. The Hamiltonian is therefore di-
agonalized with a straightforward canonical transformation,
giving a dispersion relation of the form

�k =
kx

2

2mx
+

ky
2

2my
, �62�

and constant matrix elements f� , f�� �1+O��k��.
The connected correlation function is therefore given by

C�k,�� �
�k

�2 + �k
2 , �63�

with no sublattice dependence to leading order. After Fourier
transforming back to real space, this gives

C�r,z� �
1

�z�
exp�−

mxx
2 + myy

2

2�z� 
 , �64�

the correlation function for a random walk in two
dimensions.2 This is to be expected near the transition into
the vacuum, where the density is small and the correlations
at distances shorter than the string separation are controlled
by the behavior of an isolated string. In this random-walk
regime, the correlation function no longer reflects the di-
rected hopping of the original Hamiltonian since a single
step is sufficient to randomize the sublattice of the string.

V. DISCUSSION

In summary, we have studied spin-ice in a �100� magnetic
field by mapping the classical statistical system in three spa-
tial dimensions into a quantum model in two spatial dimen-
sions. The thermal phase transition between a Coulomb
phase at weak field and an ordered phase at strong field was
mapped to a quantum phase transition between a condensed
phase of bosons and the vacuum. While one cannot naïvely
write a Landau–Ginzburg–Wilson �LGW� theory for the
original transition since neither state is thermally disordered,
the quantum transition is described by the standard critical
theory for bosons at low density.16,19

The quantum Hamiltonian that results from the mapping
is strongly interacting, and we have not attempted to find it
explicitly. Instead, we showed how symmetry considerations
can be used to constrain the general form for the Hamil-
tonian and for the corresponding continuum action. Using
these general forms, we presented two different calculations
of the correlations within the superfluid phase, which, in the
zero-field limit, agree with previous results for the classical
Coulomb phase.8,9

While the mapping from quantum-mechanical systems in
d−1 dimensions to classical systems in d dimensions is of

course standard, we believe that this is the first example of
the use of the reverse mapping to derive a LGW theory for a
naïvely non-LGW thermal phase transition. �See Ref. 21 for
an example of an application to an LGW transition in two
spatial dimensions.� As noted above, a forthcoming work22

will present the application of this approach to the ordering
transition of close-packed dimers on the cubic lattice,1 which
is also believed to exhibit a non-LGW thermal phase transi-
tion.
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APPENDIX: SYMMETRIES OF THE CONTINUUM
THEORY

Here we present a method by which the continuum action
presented in Sec. III could in principle be derived directly,
clarifying the precise form of time-reversal symmetry in the
continuum theory. The first stage is to express the partition
function for the bosonic problem as a coherent-state path
integral �with the hard-core constraint enforced by an ex-
plicit term added to the Hamiltonian�. The quadratic hopping
term is then decoupled using a field � j defined on the sites j
of the lattice, as in the standard derivation of a continuum
theory for the bosonic Hubbard model.19 One can then in
principle trace over the bosonic degrees of freedom to give
an effective action for �. Since the field � couples linearly to
the bosonic field b, the effective action is symmetric under
phase rotation �→�ei� �for arbitrary real �� and the conden-
sation transition corresponds to the spontaneous breaking of
this symmetry of �.

In the case of the bosonic Hubbard model, where there is
only a quadratic hopping term, decoupling this term leaves a
single-site problem, for which tracing over the bosonic de-
grees of freedom is tractable. This is no longer the case with
correlated hopping terms, but the effective action for � can
still be written in the form

e−Seff��� =
 Dbe−S�b,��. �A1�

Returning to the Hamiltonian representation, this can be re-
written as

e−Seff��� = Tr�T� exp�− 

0

�

d�H�������� , �A2�

where H��� is the Hamiltonian H in which the quadratic
Hermitian part of the hopping has been replaced by
� j�� j

�bj +� jbj
†�. The presence of the time-ordering operator

T� �for imaginary time �� makes this form inconvenient to
use, and we instead make the time order explicit by writing
this as

STEPHEN POWELL AND J. T. CHALKER PHYSICAL REVIEW B 78, 024422 �2008�

024422-12



e−Seff��� = Tr lim
L→�

�
�=1

L

e−H���������, �A3�

where ��=� /L and ��= ��− 1
2 ���.

The symmetry properties of the effective action Seff can
be determined from this form of the expression. First, con-
sider a symmetry such as Ry, defined in Sec. II B, which
takes y→−y and exchanges the two sublattices, but has no
effect on the z direction. This is a symmetry of the Hamil-
tonian H so that we can write RyHRy =H, where Ry here
denotes the operator representing the transformation �and so
Ry

−1=Ry�. For H���, we have RyH���Ry =H�Ry��, where
Ry� indicates the result of applying Ry to the field �. Note
that here � denotes the value of the field at one particular
instant, say, ��.

Using Eq. �A3�, we can therefore write

e−Seff�Ry�� = Tr lim
L→�

�
�=1

L

e−RyH�������Ry��. �A4�

The power-series definition of the exponential and the
cyclicity of the trace cause the operators to cancel so that
Seff���=Seff�Ry��.

The same logic applies to particle-hole symmetry at half
filling since �H ,Iph�=0 and so IphH���Iph=H����. When
the Hamiltonian is not particle-hole symmetric, however, the

latter identity is no longer true. If the Hamiltonian H were
Hermitian, we would have H����= �H����†, but instead tak-
ing the Hermitian conjugate changes the direction of the di-
rected hopping, and so we have Iy�H����Iy = �H�Iy����†. We
write Iy� rather than Iy since � again denotes the value of the
field at one particular instant, and so Iy� only inverts the y
coordinates.

The analog of Eq. �A3� is now

e−Seff�Iy�� = Tr lim
L→�

�
�=1

L

e−Iy��H���������
†Iy��, �A5�

where the Iy� operators can again be cancelled �and the
power-series definition of the exponential yet again used�,
leaving

e−Seff�Iy�� = Tr lim
L→�

�
�=1

L

�e−H�����������†. �A6�

The property of the Hermitian conjugate that A†B†= �BA�†

now allows the product to be reversed; after changing
the labeling of the time steps, we have finally

Seff�Iy��=Seff��̃��, where �̃ denotes the time reverse of �.
The operator Iy, which effects time reversal as well as y
reflection, then obeys the identity Seff�Iy��=Seff����, as as-
sumed in Sec. III.
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